

1

en

bna

WATER TREATMENT THROUGH SEDIMENTATION

0

LUIMa



Treatment and recycling of process water not only reduces operating costs but also protects the environment.

# Lamella Separators made by WIMA are part of the solution.

A wide variety of process water is treated with Lamella Separators. They reduce the use of fresh water and disposal costs for waste water.



Lamella Separators for the treatment of process water



# Lamella Separator

### **LA-Series**

Lamella Separators of the LA series effectively separate particles from liquids and are used for the treatment of waste water coming from density separation processes.

With a compact design, WIMA Lamella Separators are characterized by low-maintenance and low-energy operation. Apart from the central agitator unit, no moving parts are used in the



clarification process. Units up to size 40 have their own extendable legs which makes them very flexible and mobile. Combinations with WIMA HDS series or integration into existing plants can be realised easily and quickly.

View from above the Lamella Separator

## Operating Principles of Lamella Separators

Sedimentation is used in the Lamella Separator to separate the particles contained in the waste water. Compared to conventional sedimentation tanks or circular thickeners, Lamella Separators allow significantly smaller footprints to be realised for the treatment of wastewater volume flows.

For this purpose, several stacked sedimentation zones (area between two lamellas) are created. These sedimentation zones can be regarded as (fictitious) sedimentation basins (1). As the water flows through the sedimentation zones, the particles sink and eventually make contact with the "bottom" (lamella). The inclined arrangement of the individual lamellae causes the particles to slide down. The separated particles are collected in the hopper of the Lamella Separator. The discharge for the formed sludge layer is located at the bottom of the hopper. The sludge layer is permanently kept in motion by an agitator, ensuring continuous or discontinuous discharge (depending on the application).



Schematic diagram of sedimentation basin – area between two lamellas





Effective sedimentation surface = A1 + A2



Comparison: Lamella Separator (left) and sedimentation basin (right)

#### **Operating Principles LA**

- 1 Inlet for process water to be treated
- 2 Agitator motor
- 3 Lamella
- 4 Outlet for treated process water
- 5 Outlet for sludge

The arrangement of the lamellas creates overlapping sedimentation surfaces. Due to the enlargement of the sedimentation surface and the associated reduction of the flow velocity, the particles in the water can settle more easily.

Effective sedimentation surface (idealised)

## **Dimensions LA-Series**



**Technical Data LA-Series** 

|                              |                           |      | LA10    | LA20R                           | LA40R                           | LA50R                 | LA100R                | LA200R           | LA300R   |  |
|------------------------------|---------------------------|------|---------|---------------------------------|---------------------------------|-----------------------|-----------------------|------------------|----------|--|
| NOMINAL VOLUME FLOW          |                           | m³/h | 10      | 20                              | 40                              | 50                    | 100                   | 200              | 300      |  |
| EFFECTIVE LAMELLA<br>SURFACE |                           | m²   | 10      | 20                              | 40                              | 50                    | 100                   | 200              | 300      |  |
| DIMENSIONS                   | Width                     | mm   | 900     | 1,500                           | 2,150                           | 2,500                 | 3,400                 | 3,400            | 3,500    |  |
|                              | Length                    | mm   | 1.900   | 2,350                           | 3,000                           | 3,400                 | 4,200                 | 4,900            | 6,050    |  |
|                              | Height (without<br>motor) | mm   | 2,100   | 2,450                           | 2,650                           | 3,700                 | 4,250                 | 5,300            | 6,100    |  |
| WEIGHTS                      | Unladen weight            | kg   | 700     | 2.000                           | 2,750                           | 5,000                 | 6,000                 | 9,000            | 14,000   |  |
|                              | Working weight            | kg   | 1,900   | 6,000                           | 8,500                           | 17,000                | 30,000                | 48,000           | 62,000   |  |
| CONNECTIONS                  | Inlet                     |      | 2" (IG) | 3" (IG)                         | 4" (IG)                         | DN 150,<br>PN 10/16   | DN200, PN 16 (flange) |                  | DN300,   |  |
|                              | Outlet clean water        |      | 3" (IG) | DN 100,<br>PN 10/16<br>(flange) | DN 150,<br>PN 10/16<br>(flange) | (flange)<br>DN2<br>(1 |                       | n, PN 16<br>nge) | (flange) |  |
|                              | Outlet sludge             |      | DN 1    | 100, PN 10/16                   | DN150, PN 10/16 (flange)        |                       |                       |                  |          |  |
| POWER SUPPLY                 | Mains type                |      |         | 3 PH/N/PE                       |                                 |                       |                       |                  |          |  |
|                              | Supply voltage            | VAC  |         | 400                             |                                 |                       |                       |                  |          |  |
|                              | Frequency                 | Hz   |         | 50                              |                                 |                       |                       |                  |          |  |
|                              | Power input               | kW   |         | 0.18                            |                                 |                       |                       |                  |          |  |
|                              | Backup fuse (CEE plug)    | А    |         | 16                              |                                 |                       |                       |                  |          |  |

Nominal flow rate in m<sup>3</sup>



LAMELLA SEPARATORS









WIMA Wilsdruffer Maschinen- und Anlagenbau GmbH Freiberger Straße 79 | 01723 Wilsdruff | GERMANY

Phone: +49 (35204) 659-0

E-Mail: wasser@wima-maschinen.de www.wima-maschinen.de

